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A B S T R A C T   

Among the factors influencing the intensity of soil erosion by water, the relief sets the basic conditions for the 
occurrence of erosion-sedimentation processes: the geometry of the contact surface with water runoff and its 
primary spatial characteristics. We developed a model that describes the categories of the intensity of soil erosion 
by water only by geomorphic parameters using a DEM. The study was conducted in arable soils in the south-
eastern part of the Central Russian Upland, namely, typical Chernozems (TCh) in the forest-steppe zone and 
ordinary Chernozems (OCh) of the northern steppe of the temperate climate zone. Based on 1146 ground soil- 
erosion survey points, the relationship between the category of soil erosion intensity and terrain parameters 
(slope steepness, slope length and exposure, topographic position index, and slope profile curvature, etc.) was 
analyzed. The results of the revealed dependencies for the studied soils made it possible to develop prognostic 
models using ordinal logistic regression with an assessment of their accuracy. It was found that the model for 
OCh soils shows in all parameters a stronger relationship between geomorphic factors and the category of soil 
erosion intensity than the model for TCh soils. The regression model for OCh exceeds the model for TCh by 12 % 
in overall accuracy. For both soils, eroded areas are determined with much less accuracy (50–60 %) than non- 
eroded areas (80–95 %). Based on the modeling results, maps of soil erosion by water were constructed, 
where belonging to the category of soil erosion intensity was determined by the maximum probability. It is also 
shown that soil erosion intensity modeling based only on a set of geomorphic predictors is not inferior in ac-
curacy to the conventional visual-expert cartographic method and can be a more objective and efficient alter-
native in automated digital soil erosion mapping.   

1. Introduction 

Since the mid-twentieth century, active human intervention in 
geomorphic processes has triggered global changes associated with the 
acceleration of denudation processes (Cendrero et al., 2022). Agricul-
tural transformations in land use/land cover occurring against the 
background of increased rainfall intensity (Nearing et al., 2004) have 
significant impacts on increased soil erosion (Garcia-Ruiz et al., 2015), 
which is the dominant component of mechanical denudation on a global 
scale. Today, anthropogenically increased soil erosion is a worldwide 
problem with serious economic and environmental consequences. An 

assessment of global water erosion rates from 2001 to 2012 (Borrelli 
et al., 2017) showed an increase in average annual potential soil erosion 
rates by 2.5 %; these authors estimated their total amount at 35.9 billion 
t yr− 1. The land-use type with a high level of land management and a 
particular focus on ecological restoration is currently a key mechanism 
for regulating and reducing soil erosion rates (Xiong et al., 2019). The 
resistance of cultivated soil to water erosion is an important factor 
determining the mean soil quality index over the watershed in relation 
to its interaction with erosion processes (Lal et al., 2018). Rational 
management of soil and land resources cannot be done without 
considering the erosion risk factor, especially on arable land. 
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The worldwide problem of water erosion of soils is also relevant for 
Russia. This exogenous process is the most common cause of agricultural 
land degradation in Russia and covers all regions of the country (State 
Report on the State and Environmental Protection of the Russian Federation 
in 2021, 2022). In European Russia (i.e., the European part of Russia), 
where the main crop production of the country is concentrated, 34 % of 
arable land and 51 % of pasture area is vulnerable to water erosion 
(Tsymbarovich et al., 2020). The Chernozems are especially affected by 
water erosion. These soils are the largest soil depository of organic 
carbon (from 250 to 320 t ha− 1 in a layer of 0–100 cm), and more than 
half of the area of Chernozems in the world is located in Russia (Lisetskii, 
2023). Agricultural soil erosion alters the natural biogeochemical cycle, 
including soil carbon fluxes (Quinton et al., 2010). The Chernozems and 
most other zonal soils in European Russia have been severely depleted 
over a long history of agricultural exploitation and are characterized by 
high losses of soil organic carbon (Chendev et al., 2015; Zhidkin et al., 
2022). For assessing land degradation at the national and sub-national 
level in Russia, the soil erosion dynamics were proposed (Tsymbar-
ovich et al., 2020) as an additional indicator of land degradation 
neutrality (Cowie et al., 2018), in addition to the dynamics of land 
cover, land productivity, and soil organic carbon. In European Russia, a 
significant reduction in the area of cultivated soils (Prishchepov et al., 
2017; Gusarov, 2021) in all landscape zones after 1991 (after the 
collapse of the Soviet Union) was one of the main reasons (with 
concomitant climate change) for significant reduction in erosion- 
induced soil losses over the past few decades (Golosov et al., 2018; 
Gusarov, 2019, 2020, 2021). Transformations in the agricultural pro-
duction of Russia ultimately affected the soil-protective capacity of 
agrocoenoses. Moreover, in various landscape zones, it has a different 
direction (Litvin et al., 2017): soil washout has decreased in the forest 
and forest-steppe zones, but has increased in the steppe zone because of 
an increase in the share of tilled crops. Since 2021, the State Program 
(State Program of the Russian Federation, 2021) for the effective 
involvement of agricultural land in crop rotation and the development of 
the reclamation complex has been in force in Russia. Its main goal is to 
expand the area under crops by involving fallow lands in the crop 
rotation. It was revealed (Ivanov, 2018) that a significant part of the 
arable land abandoned in the 1990s has a high erosion potential because 
of the relief, which has certain risks if these lands are indiscriminately 
returned to cultivation. Therefore, it is extremely important at the level 
of administrative regions and local governments to preventively identify 
areas where re-plowing is inappropriate or requires the use of a complex 
of soil-control measures. One of the ways to solve this problem is to 
update and inventory the areas of eroded arable soils in these regions. 

For medium-scale estimates of soil erosion by water at the regional 
level, it is advisable to use the methods of automated digital soil (soil 
erosion) mapping. Numerous techniques such as statistical, geo-
statistical, and various machine and deep-learning-based techniques 
have been used to develop models for predicting various soil properties 
in digital soil (soil erosion) mapping (Mondal and Sahoo, 2022). A va-
riety of statistical approaches and the development of technical capa-
bilities for processing spatial data have made it possible to improve 
conventional soil (soil erosion) mapping approaches. It is based on a 
Scorpan Kriging approach and soil spatial prediction functions and 
spatially autocorrelated errors (McBratney et al., 2003), which are based 
on descriptions of relationships between soil and other spatially refer-
enced landscape factors (Jenny, 1941). The trends in modern soil (soil 
erosion) mapping are moving away from qualitative assessments toward 
quantitative, partially deterministic and partially probabilistic, empir-
ical theory (Lagacherie et al., 2006; Savin et al., 2019). Thus, digital soil 
mapping is a fast and cost-effective alternative to conventional mapping 
methods, with higher spatial resolution, better map accuracy, and un-
certainty quantification. 

The most commonly used method of spatial reflection of water 
erosion processes and their prediction is soil erosion modeling (Jetten 
et al., 2003; Karydas et al., 2014; Batista et al., 2019; Borrelli et al., 

2021; Senanayake et al., 2022; etc.). The most popular mathematical 
models in research are USLE (Universal Soil Loss Equation), RUSLE 
(Revised Universal Soil Loss Equation), WEPP (Watershed Erosion Pre-
diction Project), SWAT (Soil and Water Assessment Tool), and WaTEM/ 
SEDEM (Water and Tillage Erosion Model/Sediment Delivery Model) 
(Bezak et al., 2021). They show erosion risk in terms of mean annual 
potential soil loss per unit area, but do not reflect actual soil properties. 
A direct connection between the simulated values of soil erosion in-
tensity and the actual ones is achieved through a combination with the 
methods of soil morphological diagnostics and the establishment of 
functional dependencies (Kozlov et al., 2019; Zhidkin et al., 2023). 

The relief is one of the most frequently used environmental cova-
riates in digital soil (soil erosion) mapping (Chen et al., 2022). Among all 
the factors affecting water erosion processes, the relief is the most 
“stable” in time. Over the long history of soil development, rainfall 
patterns, the types of crops grown and farming practices change more 
rapidly than geomorphic conditions. Input terrain morphometric pa-
rameters are used both in continuous soil (or soil erosion) mapping to 
identify soil classes (Sorokina and Kozlov, 2009; Shi et al., 2012; Loz-
benev et al., 2022; etc.) and in assessing individual soil properties 
(Campling et al., 2002; Taghizadeh-Mehrjardi et al., 2019) and 
modeling the consequences of natural and human-induced events (Del 
Pino and Ruiz-Gallardo, 2015). 

The aim of this study is to develop a probabilistic model for auto-
mated mapping of soil erosion intensity categories of some subtypes of 
zonal Chernozem soils based only on the analysis of a set of geomorphic 
predictors. In the context of this study, soil erosion was considered as the 
result of a long-term erosion-sedimentation process covering the entire 
history of land use of the study area. The study is a continuation and 
methodological deepening of the work previously carried out by the 
authors (Buryak et al., 2021) on digital mapping of soil erosion intensity 
using the ordinal logistic regression method. During the study, the 
following tasks were successively solved: (1) calculation of terrain 
morphometric parameters using a digital model, (2) assessment of the 
relationship between the parameters and various categories of soil 
erosion intensity, (3) comparison of the role of geomorphic conditions in 
water erosion of the studied subtypes of Chernozems, and (4) predictive 
soil erosion intensity model development. 

2. Study area 

The study area covers the transition zone from the southern forest- 
steppe to the northern steppe in the southeastern part of the Central 
Russian Upland of the East European Plain with characteristic zonal 
soils. The target areas of our research and modeling are arable lands. For 
comparison, two study sites were selected at a distance of about 70 km 
from each other. The sites are similar in terms of geomorphic conditions 
and differ in the prevailing soil cover (Fig. 1). 

Site I is located in the south of the forest-steppe zone and covers a 
section of the Dnieper-Don interfluve, being confined to the basins of the 
upper reaches of the Severskij (or Seversky) Donets and Seym rivers. The 
regional climate according to the Köppen classification is a humid 
continental climate with warm summers (Dfb). This area receives about 
580 mm of precipitation annually and the annual average air tempera-
ture is about 6.8 ◦C. The zonal soils are typical Chernozems (according to 
the World Reference Base for Soil Resources (WRB), Voronic and Vermic 
Chernozems), formed on loess-like loams. In the Belgorod Oblast 
(27,134 km2), one of the administrative regions of Russia, where the 
studied sites are located, the average thickness of the humus horizon of 
these soils is from 73 to 87 cm, the humus content is 5.5–7.0 %; and the 
humus reserves are 420–530 t ha− 1 (Solovichenko and Tyutyunov, 
2013). The relief is characterized as a slightly undulating elevated plain 
with elevations from 120 to 269 m a.s.l. The river valleys have a lat-
itudinal orientation with plateau-like interfluves 8–10 km wide, 
dissected by a network of small dry valleys and gullies. The density of 
the erosion network is 1.14 km km− 2. The average incision depth of the 
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small dry valley network at this site is about 50 m. The average steepness 
of the slopes within the site is 2.3◦. 

Site II is located about 70 km southeast from site I (Fig. 1); it is 
confined to the zone of the northern steppe and occupies the basins of 
the upper reaches of the Aidar and Valuy rivers, which belong to the 
Severskij Donets River basin. The climatic conditions in this site are 
somewhat drier compared to site I: the annual precipitation is about 570 
mm and the annual average air temperature is about 8.0 ◦C. The zonal 
soils are ordinary Chernozems1 (according to WRB, Vorony–Calcic 
Chernozems). The average thickness of the humus horizon of these soils 
is from 56 to 66 cm, the humus content is 4.8–6.9 %, and the humus 
reserves are 310–433 t ha− 1 (Solovichenko and Tyutyunov, 2013). 
These soils are formed on loess-like carbonate loams and clays. The el-
evations in the site are lower and range from 71 to 224 m a.s.l. The relief 
is also dissected by an erosion network consisting of mainly small dry 
valleys with a density of 1.01 km km− 2. Compared to site I, the network 
of small dry valleys is more incised with an average vertical dissection of 
70 m. The average steepness of the slopes within the site is 2.6◦. 

The plowed area of both sites varies from 50 % to 60 %, while 1/4 of 
the arable land occupies slopes of >3◦. History of agricultural 

development of these territories is 250–300 years old. Because of diffi-
cult geomorphic conditions, combined with agricultural pressure, the 
soils of both sites are universally subjected to intense water erosion 
processes. Changes in the conditions of moisture and heat supply since 
the mid-1990s in the forest-steppe landscape zone of European Russia 
have resulted in a simultaneous reduction in the thickness of the 
seasonally frozen part of the soil and snowmelt runoff (Barabanov and 
Panov, 2012). As a result, the predominance of rainfall erosion over 
snowmelt erosion was established (Petelko et al., 2007; Maltsev and 
Yermolaev, 2020). In the study area, 53.6 % of the arable soils are 
eroded to some extent (Lukin et al., 2008), and the areas of highly 
eroded soils continue to increase, having grown by 6 % over 30 yr 
(Lisetskii and Martsinevskaya, 2009). The mean annual soil loss per 1 ha 
of arable land, considering the current composition of crops, is 3.7 t yr− 1 

at site I and 4.0 t yr− 1 at site II (Buryak et al., 2022). 
As stated above, both studied sites are located within the Belgorod 

Oblast, one of the administrative regions of European Russia. This is one 
of the leading agricultural regions of the country, which has programs 
for the protection, reproduction and management of soil fertility in 
conditions of intensive crop production. One of them is the program for 
the introduction of a biological farming system, which has been in 
operation since 2011. One of the goals of the program is to regulate the 
productivity of agrocoenoses through a regulated fertilizer system with 
the highest priority on organic fertilizer resources (Kiryushin, 2019). As 
a result, the maximum weighted average content of organic matter 

Fig. 1. The location of the study area (b) and studied sites (c) (I – site I, II – site II) in Eastern Europe (a).  

1 Ordinary Chernozems, like typical Chernozems, are distinguished according 
to the classification and diagnostics of the soils of the former Soviet Union 
(Egorov et al., 1977). 
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(5.89 %) was recorded in the arable soils of the Belgorod Oblast in the 
entire history of observations (Lukin, 2021). 

3. Materials and methods 

3.1. Materials 

The initial data on the categories of soil erosion intensity were the 
materials of one of the stages (2015–2018) of the regular soil survey in 
the Belgorod Oblast. The survey was carried out by the Centre of 
Agrochemical Service “Belgorodsky” to update the previously per-
formed (1965–1980s) continuous soil mapping. During a field soil- 
erosion survey, ten pits were laid per 1000 ha: one pit (20 cm deeper 
than the parent rock), three half-pits (before the parent rock), and six 
mini-pits (within the humus horizon). The category of soil erosion in-
tensity was determined by the soil-morphological method based on the 
difference in the thickness of the humus layer between the reference pit 
sections on the flat interfluve surface and the survey (sampling) points 
on the slope. This technique reflects the result of soil erosion processes 
for the entire historical period of plowing, which for the objects of study 
is 250–300 years. The following categories of soil erosion intensity of 
Chernozems are distinguished: (a) non-eroded, (b) slightly eroded, (c) 
moderately eroded, and (d) highly eroded soils. According to the 
regional method of soil erosion survey (Solovichenko and Tyutyunov, 
2014), in slightly eroded Chernozems, the thickness of the humus ho-
rizon is reduced to half of the humus-accumulative horizon A + O, 
including humus horizon and grassy turf (topsoil; by 10–20 cm); in 
moderately eroded Chernozems, the humus horizon is reduced by 
20–40 cm and the upper part of the transition (sub)horizon AB is 
plowed; in highly eroded Chernozems, most of the transition (sub)ho-
rizon AB is washed away and the illuvial horizon B and transition (sub) 
horizon BC are plowed up. 

The total sample includes 1146 survey points, 671 at site I with 
typical Chernozems (TCh) and 475 at site II with ordinary Chernozems 
(OCh) (Fig. 2). The proportion of points with non-eroded soils is 44–59 
%, with slightly eroded 20–36 %, moderately eroded 17–20 %, and 
highly eroded soils 0.1–4 %. 

The weak representation of points with highly eroded soils is because 
such a category of soil erosion intensity is rarely found on arable land. 
Highly eroded soils are localized, as a rule, at the junction of the lower 
parts of plowed slopes to the network of small dry valleys. Therefore, it 
was decided to combine moderately eroded and highly eroded soils into 
a single category (hereinafter referred to as moderately (+highly) 
eroded soils). Both studied sites have approximately the same number of 
points with non-eroded soils (298 and 282). According to the results of 
field surveys, the sample of eroded TCh (373) turned out to be about 
twice as large as eroded OCh (193). However, in percentage terms 

within the groups, the proportion of eroded soils is 56 % for TCh and 41 
% for OCh, which allows their comparative assessment, and the sample 
sizes are sufficient to get statistically significant simulation results. 

3.2. Methods 

3.2.1. Morphometric analysis 
Currently, there are many publicly available LiDAR-derived global 

digital elevation models (DEM) based on remote sensing data of 
different resolution and vertical accuracy (Uuemaa et al., 2020). All of 
them have a common drawback over digitized topographic maps – er-
rors caused by vegetation cover (because of confusion between land 
surface and land cover) (Spaete et al., 2011). Therefore, for this study, 
preference was given to DEMs built on digitized contours based on 
topographic maps. When analyzing the relief characteristics, we used a 
DEM with a spatial resolution of 100 m/pixel (Buryak et al., 2019) from 
the data collection of the Shared Use Center of the Federal and Regional 
Center for Aerospace and Ground Monitoring of Objects and Natural 
Resources (the city of Belgorod, Russia). The optimal DEM resolution 
was selected by comparing models with a resolution of 30, 50, 100 and 
150 m/pixel within a relatively small test area. It was found that when 
using a resolution of 100 m/pixel, the model does not show significant 
differences compared to the models with resolutions of 30 and 50 m/ 
pixel, but significantly reduces the time for data processing. The DEM 
resolution of 100 m/pixel remains detailed enough to convey the het-
erogeneity of the relief in the study area, considering the average size 
(area) of one cultivated field and the distance between survey (sam-
pling) points. The selected spatial resolution avoids the appearance of 
artifacts when constructing rasters based on geomorphometric charac-
teristics. To construct the DEM, we used the method of interpolating the 
values of elevations and relief contours using the special algorithm 
TopotoRaster (Reuter and Nelson, 2009) presented in ArcGIS 10.5. This 
method makes it possible to obtain a more accurate relief model since it 
considers the spatial position of isolines and elevations and the location 
of water bodies and local depressions. As a result, a hydrologically 
correct DEM was obtained for the entire study area. 

DEM morphometric analysis was performed using the SAGA tools 
(Terrain Analysis – Morphometry toolset) implemented within the QGIS 
program (Passy and Théry, 2018). Raster models of the following terrain 
morphometric (more precisely, morphological-morphometric) parame-
ters were built: slope steepness, slope length, slope exposure, slope 
profile curvature, slope plan curvature, absolute elevation, and topo-
graphic position index. 

The steepness and length of the slope are the basic morphometric 
parameters that determine the erosion potential of the relief. The ratio of 
these values is used in most empirical erosion models for calculating 
mean annual potential soil losses. The steepness of the slope determines 
the kinetic energy of the runoff of water, which directly affects the in-
tensity of detachment of soil particles. The length of the slope de-
termines the duration and increasing intensity of the runoff of water. 
However, the effect of the slope length on water erosion processes is 
non-linear (Svetlichny, 1991; Zhidkin et al., 2015): as the path of the 
runoff of water increases, eroded soil material is redeposited on the 
slope, forming sedimentation zones. Therefore, in this study, the effects 
of slope steepness and length on soil erosion were considered separately. 

The slope exposure can also affect snowmelt runoff erosion, with 
different approaches assessing the role of this effect in different ways. On 
the one hand, in terms of snowstorm transport, the northern slopes in the 
study area are more erosion-prone, since they have large snow reserves 
and, consequently, a large potential slope water runoff during snowmelt 
(Larionov, 1993). On the other hand, the role of insolation provides a 
greater erosion risk on the southern slopes because of warming (Shvebs, 
1974; Gerasimenko, 1995). There, snowmelt occurs more rapidly and 
can result in high soil losses under conditions of sufficient soil freezing 
(Ollesch et al., 2005). Despite the decreasing role of snowmelt runoff in 
soil erosion over the past three decades noted above, in our work, the 

Fig. 2. The distribution of the number of points (N) of erosion survey in the 
studied sites by the categories of soil erosion intensity (0, 1, and 2 are non- 
eroded, slightly eroded, and moderately (+highly) eroded soils, respectively). 
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slope exposure factor was considered from the point of view of snowmelt 
intensity, since soil erosion is the result of erosion over the entire history 
of arable land cultivation. To consider this dependence, the slope 
exposure factor was expressed in terms of the azimuth cosine, which 
varies from 1 for the northern slopes to − 1 for the southern slopes. In 
this context, the slope exposure factor is inversely proportional to water 
erosion risk. 

The profile curvature (curvature of the slope profile) is parallel to the 
slope and indicates the direction of maximum gradient. It affects the 
acceleration and deceleration of surface runoff and, hence, the intensity 
of erosion and sedimentation. The profile curvature index is expressed as 
a coefficient, where values <0 correspond to concave slopes, and values 
>0 correspond to convex ones. 

The plan curvature (curvature of the slope plan) calculates the cur-
vature of the surface in the horizontal plane, or the curvature of the 
contour. The plan curvature is perpendicular to the maximum gradient 
of the slope surface and determines the convergence and divergence of 
surface runoff from the overlying catchment area. The plan curvature 
index is represented by a coefficient, where values <0 correspond to 
collecting (convergent) slopes, >0 to scattering (divergent) ones. 

The Topographic Position Index (TPI) characterizes the position of a 
point in a slope system along a topographic gradient and allows a 
quantitative description of positive and negative landforms. The abso-
lute value of TPI (De Reu et al., 2013) is calculated as the difference 
between the elevation of each DEM cell and the average elevation in a 
given neighborhood around it. For the conditions of the area of our 
study, it was established by the expert method that the TPI model with a 
radius of 2 km most adequately describes the relief conditions of the 
study area. Positive TPI values correspond to interfluves, and negative 
values correspond to thalwegs. From the point of view of its effect on 
water erosion, the TPI index reflects the distribution of the categories of 
soil erosion downslope. 

Some terrain parameters were also considered both as continuous 
data and as dummy variables by categories. A general list of the 
analyzed terrain parameters is presented in Table 1. 

3.2.2. Statistical analysis 
Statistical data processing was performed in the environment for 

statistical calculations R 3.6.3. The statistical process was divided into 
two stages. In the first stage, correlation and contingency analyses were 
carried out. In the second stage, a regression analysis was carried out. 

The correlation analysis assessed the correlation between the char-
acteristics of the relief and the categories of soil erosion intensity on 
arable land. For this, the cor.test function from the basic set of R-func-
tions was used, which provided the Spearman's correlation coefficient. 
Those relief characteristics that had a statistically significant correlation 
with soil erosion were further considered as potential predictors for the 
regression analysis (R Core Team, 2020). Additional packages in the R 
environment were used for the analysis: car, cocor, vcd, VGAM. The car 

package contains methods for diagnosing regression models (Fox and 
Weisberg, 2019). The cocor package contains statistical tests for 
comparing correlation coefficients of dependent or independent groups 
(Diedenhofen and Musch, 2015). The vcd package contains methods for 
analyzing and identifying categorical data (Meyer et al., 2006). The 
VGAM package helps to create various vector generalized linear and 
additive regression models (VGLM/VGAM), including ordinal regression 
models (Yee, 2010). Specific analysis methods and corresponding R- 
functions from additional packages that were used in this work are 
described below. 

Correlation analysis was carried out separately for TCh and OCh. To 
assess the statistical significance of differences between the correlation 
coefficients for TCh and OCh, a 95 % confidence interval was calculated 
using the Zou method (Zou, 2007), which utilized the cocor.indep.groups 
function from the additional cocor package (Diedenhofen and Musch, 
2015). The null hypothesis in the Zou method is that there is no dif-
ference between the correlation coefficients. If the 95 % confidence 
interval does not include the value 0, then the null hypothesis is rejected. 

For the relief characteristics that did not have a statistically signifi-
cant correlation with the categories of soil erosion intensity, a contin-
gency analysis was carried out in addition to the correlation analysis. 
Such characteristics were previously converted from quantitative to 
qualitative by dividing into gradations. The contingency analysis was 
carried out using the additional vcd package (Meyer et al., 2006). The 
contingency value was estimated from the Cramér's V value calculated 
using the assocstats function. Those relief characteristics that did not 
have a statistically significant correlation, but had a statistically signif-
icant contingency, were subsequently included in the regression analysis 
as dummy variables. 

An additional VGAM package (Yee, 2010) was used to perform 
regression analysis. Using the vglm function from the VGAM package, 
two ordinal regression models were created that describe the effect of 
the relief on the categories of soil erosion intensity on arable soils. One 
model was created for TCh, the second for OCh. Parallel cumulative logit 
models were used: 

logit[P(Y ≤ j) ] = ln
[

π1 + … + πj

πj+1 + … + πJ

]

= αj + βx, j = 1,…, J–1 (1)  

where P(Y ≤ j) is the odds ratio that a particular observation has a 
category equal to or less than j; Y is a dependent variable that takes 
values in the form of ordered categories; j is the serial number of the 
competitive category; π is the probability of a specific category; J is the 
total number of categories; α and β are the intercept (free (constant) 
term) of the equation and the regression coefficient, respectively; x is an 
independent variable (predictor). 

The logit values calculated from the model were converted into the 
probability (P) of finding a certain category using potentiation. In this 
case, for all categories, except for the highest, separate regression 
equations were created. The probability of the highest category was 
calculated by subtracting from one the probabilities of all other cate-
gories (McCullagh, 1980). The formulas for calculating the probability 
in the ordinal regression model for the categories of soil erosion are as 
follows: 

For non − eroded soils : P0 =
exp(logit0)

1 + exp(logit0)
(2)  

For slightly eroded soils : P1 =
exp(logit1)

1 + exp(logit1)
–P0 (3)  

For moderately (+ highly)eroded soils : P2 = 1–
exp(logit1)

1 + exp(logit1)
(4) 

The search for the optimal composition of model predictors was 
carried out using the regression method for all subsets. The resulting 
models were compared in terms of overall accuracy – GenAcc (the 

Table 1 
The terrain parameters used in the study.  

Parameter Parameter 
designation 

Unit of measurement 

Absolute elevation H m a.s.l. 
Slope steepness S ◦

Cosine of slope exposure A Dimensionless 
Belonging to the north (dummy 

variable) 
North 1 is north, 0 is south 

Topographic position index TPI Dimensionless 
Belonging to flat interfluve 

surface 
Top 1 is flat interfluve, 0 is not 

flat interfluve 
Slope length L m 
Profile curvature Curv Dimensionless 
Plan curvature Curv_plan Dimensionless 
Water collecting/scattering slope 

shape (dummy variable) 
Convergent 1 is collecting slope, 0 is 

scattering slope  
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proportion of correctly predicted observations), the accuracy for indi-
vidual categories of soil erosion (Acc 0, 1, 2), BIC (the Bayesian Infor-
mation Criterion, which is also known as the Schwartz Information 
Criterion (Thompson et al., 2017)), and the degree of multicollinearity 
of predictors. The degree of multicollinearity of each predictor was 
estimated by the value of VIF (Variance Inflation Factor), calculated 
using the vif function from the additional car package (Fox and Weis-
berg, 2019). When choosing models, we tried to maximize the overall 
accuracy value and minimize the BIC value. In this case, only those 
models for which there was no multicollinearity of predictors were 
considered. Models in which none of the variables had a VIF value >5.0 
were considered as such (Akinwande et al., 2015). 

Diagnostics of the fitted ordinal regression models included assessing 
the overall statistical significance, the statistical significance of the co-
efficients, and determining the predictive power of each model. The LR- 
test (Likelihood Ratio test) was used to assess the overall statistical 
significance of the fitted models (Lipsitz et al., 1996). In the VGAM 
package, it is implemented as the lrtest function. Using the LR-test, the 
fitted model was compared with the null model (а model with only an 
intercept (free term) and no predictors). Models that were statistically 
significant, according to the results of the LR-test, differed from the null 
model. The estimates of the statistical significance of the model co-
efficients (p-values) were contained ready-made in the object created by 
the vglm function (a vector generalized linear model). These estimates 
were derived from the Z-test. 

To assess the predictive ability of the models, the accuracy value (the 
proportion of correctly recognized observations) calculated based on the 
confusion matrix was used. Both the overall accuracy of the models and 
the accuracy of prediction were calculated for each category of eroded 
Chernozems. In addition to the accuracy value, the Veall-Zimmermann 
pseudo-R2 (Veall and Zimmermann, 1994) was also used to assess the 
predictive power of the model: 

R2
vz =

2(L1–L0)/[2(L1–L0) + N ]

–2L0/(N–2L0)
(5)  

where L0 and L1 are the logarithm of the likelihood function for the null 
model and the fitted model, respectively; N is the number of observa-
tions. The log-likelihood values were computed using the logLik func-
tion from the core set of R-functions. 

Among the existing pseudo-R2 coefficients, the Veall-Zimmermann 
pseudo-R2 coefficient is the closest analogue of the coefficient of 
determination of the LSM (Least Square Method) regression. Accord-
ingly, its value can also be interpreted as the value of the LSM regression 
determination coefficient. 

3.2.3. Automated mapping of soil erosion intensity 
Automated mapping of soil erosion was performed in ArcGIS 10.5 by 

overlaying layers with the probability of the presence of the P0, P1, and 
P2 erosion intensity categories. Probability rasters were generated using 
the Raster Calculator tool using Eqs. (2)–(4) according to the selected 
ordinal regression models. Their comparison was made using the 
Highest Position tool. The resulting soil erosion map is a combination of 
the maximum values of the input rasters. Each cell of the raster corre-
sponds to the category of soil erosion intensity, which at a given point 
had the highest probability (Fig. 3). 

4. Results 

4.1. Statistical analysis of terrain morphometric parameters 

For both studied sites with the analyzed zonal subtypes of Cherno-
zems, an analysis of the close relationship between the terrain param-
eters and the categories of soil erosion intensity was made (Table 2). For 
most of the parameters, the correlation is statistically significant. In 
addition, for the subtypes of Chernozems, a comparison of the nature of 

Fig. 3. An example of creating a cartogram of soil erosion intensity based on 
probability rasters (0, 1, and 2 are non-eroded, slightly eroded, and moderately 
(+highly) eroded soils, respectively). 

Table 2 
The correlation of the category of soil erosion intensity (0 – non-eroded, 1 – 
slightly eroded, and 2 – moderately (+highly) eroded) with the terrain param-
eters of typical (TCh) and ordinary (OCh) Chernozems.  

Parameter Mean value for TCh/OCh ρ p-Value 

0 1 2 

H 223/198 201/170 193/164 − 0.57/ 
− 0.66 

≪0.0001/ 
≪0.0001 

S 1.0/0.7 3.1/3.7 4.0/4.0 0.72/ 
0.82 

≪0.0001/ 
≪0.0001 

A − 0.01/ 
0.09 

0.10/0.03 − 0.09/ 
− 0.31 

− 0.01/ 
− 0.20 

0.89/1.28 
× 10− 5 

TPI 0.82/1.12 − 0.14/ 
− 0.31 

− 0.45/ 
− 0.19 

− 0.62/ 
− 0.67 

≪0.0001/ 
≪0.0001 

L 94/42 314/396 381/330 0.48/ 
0.68 

≪0.0001/ 
≪0.0001 

Curv 0.85 ×
10− 4/1.42 
× 10− 4 

− 0.04 ×
10− 4/ 
− 0.45 ×
10− 4 

− 0.64 ×
10− 4/ 
− 0.11 ×
10− 4 

− 0.35/ 
− 0.46 

≪0.0001/ 
≪0.0001 

Curv_plan 0.006/ 
0.006 

0.005/ 
0.004 

0.007/ 
0.003 

0.02/ 
− 0.13 

0.60/0.01 

ρ – the Spearman's correlation coefficient. 
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the correlation by terrain parameters was made (Table 3). Only TPI at 
both sites equally correlates with soil erosion intensity. For other terrain 
parameters, the strength of correlation with soil erosion intensity has 
statistically significant differences between two studied sites. However, 
for all of them, a common feature was observed: ordinary Chernozems in 
all parameters show a greater closeness of the relationship between 
geomorphic factors and soil erosion intensity than typical Chernozems. 

The slope steepness is characterized by the highest value of the 
Spearman's correlation coefficient (ρ > 0.7), which indicates a strong 
relationship with soil erosion intensity. The manifestation of signs of 
water erosion in typical Chernozems begins on less steep slopes (3.1◦) 
than in ordinary Chernozems (3.7◦) (Fig. 4a). In addition, in typical 
Chernozems, differentiation of the categories of soil erosion intensity 
caused by the different slope steepness values is well manifested. On 

slightly and moderately (+highly) eroded ordinary Chernozems, most of 
the studied survey points are confined to slopes with a steepness of 
3.7–4◦. 

The absolute elevation has a noticeable relationship with water 
erosion intensity (ρ > 0.5), but the use of this terrain parameter in the 
model links it to a specific area. The average elevation difference be-
tween the compared studied sites is 24 m, which makes it difficult to 
compare these results. The semantic analogue of the absolute elevation 
is TPI, indicating the position on the slope. This parameter also shows a 
noticeable relationship with soil erosion by water. For TCh and OCh, 
non-eroded soils located on flat interfluve areas are distinguished. 
Downslope, TCh soils show more noticeable differences in soil erosion 
intensity than OCh soils (Fig. 4b). 

Soil erosion on TCh along the length of the slope increases on average 
(Fig. 4c). For OCh, this dependence is non-linear. However, the close 
relationship with slope length is weaker for TCh than for OCh. For both 
subtypes of Chernozem soils, water erosion begins to manifest itself, in 
most cases, on slopes longer than 250 m. Moreover, a characteristic 
feature of both soils is the presence of several peaks in the number of 
points in the sample for slightly and moderately (+highly) eroded soils. 
This may be caused by the physics of the redeposition of sediment on the 
slope. Some of the points are located in sediment accumulation zones, 
below which the slope length factor again begins to work to increase 
water erosion. 

The slope exposure, expressed in terms of the azimuth cosine, does 
not show a significant relationship with soil erosion intensity for TCh, 
but does show a weak relationship with erosion growth on the southern 
slopes for OCh (ρ < 0.3). The interquartile range of variation for all 
categories of soil erosion overlaps (Fig. 4d). For all cases (except for 
moderately (+highly) eroded OCh), the violin chart has 2–3 peaks; the 
studied soils are found both on the southern and northern slopes. 
Moreover, non-eroded soils (TCh) are more characteristic of the south-
ern slopes in terms of average values of A than slightly eroded soils. This 
contradicts the previously described concept of the greater erosion po-
tential of “warm” slopes (Shvebs, 1974; Gerasimenko, 1995). 

On the other hand, moderately (+highly) eroded soils (TCh and OCh) 
are mostly confined to the southern slopes. This behavior of the slope 
exposure parameter can be explained by the fact that high warming, 
which provides intensive soil erosion because of snowmelt, depends on 
the angle of incidence of solar radiation. This angle, in turn, depends not 
only on the orientation of the slope, but also on its steepness. The non- 
eroded soils of flat interfluve areas with a small steepness of the slope do 
not show a significant difference in warming, i.e., A without its corre-
lation with S cannot fully reflect the impact on soil erosion by water. 
However, this makes it possible to single out moderately (+highly) 
eroded soils among other categories. 

The slope exposure factor was also analyzed as a North parameter 
with qualitative variables dividing the slopes only into north and south 
ones. With this interpretation, in all cases, the contingency is low, but 
statistically significant (for TCh, the Cramér's V = 0.10, p = 0.03; for 
OCh, the Cramér's V = 0.23, p = 3.74 × 10− 6). It is significant even for 
those cases when a statistically insignificant result was obtained for the 
continuous variable A in the correlation analysis. The contingency dia-
gram (Fig. 5) also demonstrates small differences for non-eroded and 
slightly eroded slopes and good isolation of moderately (+highly) 
eroded soils (especially OCh) among other categories. 

The slope profile curvature shows a moderate close relationship with 
soil erosion intensity for both soil subtypes. For TCh and OCh, non- 
eroded soils refer to convex slopes adjacent to flat interfluve surfaces. 
Downslope, the profile flattens out so that eroded soils tend more toward 
concave shapes. Thus, the profile curvature has a high direct correlation 
with TPI, which also indicates the position on the slope profile. 

The plan curvature for TCh does not have a statistically significant 
effect on the intensity of soil erosion. When converting Curv_plan into 
the Convergen qualitative criterion (dividing into water-collecting and 
water-scattering slope shapes), a statistically significant, but weak 

Table 3 
Comparison of typical (TCh) and ordinary (OCh) Chernozems by correlation 
coefficients between soil erosion intensity categories and terrain parameters.  

Parameter Differencea Fisher's Z Zou's confidence intervalc 

Z p-Valueb 2.5 % 97.5 % 

H  0.09  2.42 0.02  0.02  0.16 
S  − 0.10  − 3.96 0.0001  − 0.14  − 0.05 
A  0.19  3.26 0.001  0.08  0.31 
TPI  0.05  1.52 0.13d  ¡0.02  0.12 
L  − 0.20  − 5.13 2.83 × 10− 7  − 0.28  − 0.13 
Curv  0.11  2.22 0.03  0.01  0.21 
Curv_plan  0.15  2.43 0.02  0.03  0.26  

a The difference between the coefficient of correlation for TCh and the coef-
ficient of correlation for OCh (the parameter for which there is no difference is in 
bold). 

b Differences are statistically significant at p < 0.05. 
c According to the Zou method (test), the difference between the correlation 

coefficients is statistically significant if the value of 0 does not fall within the 
boundaries of the confidence interval. 

d TPI for TCh and OCh does not differ. 

Fig. 4. The distribution of the analyzed subtypes of Chernozems (TCh and 
OCh) of different soil erosion intensity categories (0,1, and 2) by slope steepness 
(S) (a), topographic position index (TPI) (b), slope length (L) (the vertical scale 
is logarithmic) (c), slope exposure (A, the cosine of azimuth) (d). For boxplots: 1 
is median, 2 is third quartile (Q3), 3 is first quartile (Q1), 4 is interquartile 
range (IQR), 5 and 6 are maximum and minimum, respectively (excluding 
outliers), 7 is outliers, 8 is a violin plot showing the shape of the distribution of 
data (the position of the boundary is proportional to the probability density of 
the data). 
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relationship is found for both soil subtypes (for TCh, the Cramér's V =
0.13, p = 0.0003; for OCh, the Cramér's V = 0.20, p = 1.87 × 10− 7). 

4.2. Ordinal regression model and soil erosion map 

When searching for the optimal composition of predictors, all models 
were sorted from variants with ten variables to variants with two vari-
ables (1013 variants in total). The criterion VIF < 5 was used to reject 
models with highly correlated predictors. This threshold value of VIF is 
most often used in works devoted to assessing the multicollinearity of 
predictors (Akinwande et al., 2015). To select the threshold values for 
sifting models by accuracy and BIC, their dispersion was analyzed for all 
1013 possible models for each soil type. Also, for each subtype of 
Chernozems, such threshold values of BIC and accuracy were selected, 
which, after screening, left no >20–30 models with minimum BIC and 
maximum accuracy. For typical Chernozems, models with an accuracy 
of <65 % and the BIC value >990 were rejected. For ordinary Cherno-
zems, models with an accuracy of <78 % and the BIC value >460 were 
also rejected. In total, 27 models remained for typical Chernozems, and 
18 for ordinary Chernozems (Table 4). 

Among the analyzed models with different combinations of variables 
for both subtypes of Chernozems, the difference in overall accuracy does 
not exceed 4 % (Table 4). For a separate category of soil erosion in-
tensity, the maximum difference reaches 8.3 %. A slight variation in 
accuracy allows us to conclude that most of the models are comparable 
in quality. Nevertheless, the choice was made based on the principle of 
eliminating the redundancy of variables. For both subtypes of Cherno-
zems, the choice was made in favor of models with three variables with 
the highest general (overall) accuracy (GenAcc). 

For OCh, only one of the 18 models had three variables (S + A + TPI). 
At the same time, this model differed in overall accuracy from the best 
one by 1.7 %, which justified the choice in its favor. For TCh, the 
selected model, according to same criteria, has terrain parameters 
similar to those of OCh: S + North + TPI. In this case, the slope exposure 
factor A is represented by a categorical variable. The overall accuracy of 
the selected model is 1.1 % lower than the maximum accuracy. The 
models with a similar set of variables were selected for different soil 
subtypes, which made it possible to keep the principle of uniformity in 
modeling. 

Thus, the selected ordinal logistic regression models include three 
morphometric variables: S, TPI, and A (for TCh, its qualitative repre-
sentation as the North parameter) (Table 5). The expression for calcu-
lating logits to determine the probability of belonging to the categories 
of soil erosion intensity according to Eqs. (2)–(4) has the following 
forms: 

For TCh : logit0 = 1.19–0.89× S+ 0.46×North+ 0.80×TPI (6)  

logit1 = 4.09 − 0.89× S+ 0.46×North+ 0.80×TPI (7)  

For OCh : logit0 = 2.77 − 1.27× S+ 1.38×A+ 0.92×TPI (8)  

logit1 = 5.49 − 1.27× S+ 1.38×A+ 0.92×TPI (9)  

where logit0 is the logit for non-eroded soils; logit1 is the logit for non- 
eroded and slightly eroded soils. 

The base category in the models is the smallest category (non-eroded 
soils). In accordance with this, the sign in front of the regression co-
efficients is interpreted. A negative value of the variable S indicates 
feedback and is interpreted as follows: the steeper the slope, the less 
likely it is to detect a low soil erosion intensity category. For TPI, a 
positive value of this variable indicates a direct relationship: the higher 
the topographic position index (the higher the position on the slope), the 
higher the probability of detecting a low soil erosion intensity category. 

Both models and their variables are statistically significant (Table 5). 
The quality indicators of the selected ordinal logistic regression models 
are presented in Table 6. 

As an example, demonstrating the use of the proposed method in 
digital mapping of soil erosion intensity, we chose the territory of the 
farm Zakutskoye (RUSAGRO Ltd., Belgorod Oblast) with an area of 
26,000 ha, located within site II with OCh. The soil erosion intensity 
raster based on the simulation results was cropped by the field mask and 
visually compared with the archival soil map of the 1980s, updated by 
soil survey in 2015–2018 by the Centre of Agrochemical Service “Bel-
gorodsky” (Fig. 6). 

Traditionally, soil maps were made using the visual-expert method, 
where the slope was the only criterion for assessing soil erosion in-
tensity. The difference in the total areas of soil erosion intensity cate-
gories between the compared maps does not exceed 15 %. The overall 
accuracy of spatial contour coincidence is 75 %. However, there are 
significant differences in the location of contours with eroded soils: the 
accuracy of the spatial correspondence of the results of soil map 
modeling for slightly eroded and moderately (+highly) eroded soils is 
60 % and 56 %, respectively. 

5. Discussion 

Comparison of the results of morphometric analysis for the studied 
subtypes of Chernozems showed that the influence of relief manifests 
itself differently for the compared soils. In general, for TCh, the 

Fig. 5. Visualization of the contingency table for the categories of soil erosion intensity (0, 1, and 2) and the categories of slope exposure (A).  
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differentiation of soil erosion intensity in terms of the slope steepness 
and length, and topographic position on the slope is noticeable. Non- 
eroded OCh are similar in relief morphometry to TCh, however, the 
difference between these soils with different soil erosion intensity along 
the topographic gradient is not so obvious, and sometimes has a non- 
linear character. Signs of water erosion on TCh soils begin to appear 
“earlier” than on OCh soils, i.e., under more favorable terrain 
conditions. 

Table 4 
The accuracy of the used ordinal logistic regression models with different 
variables.  

Model Accuracy, % BIC n 

GenAcc Level 
0 

Level 
1 

Level 
2 

Typical Chernozems 
Erosion ~ S + TPI + Curv +

L + North + Top  
68.6  83.3  57.1  54.2  974  6 

Erosion ~ H + S + TPI +
Curv + L + North +
Convergent + Top  

68.4  83.4  56.4  55.5  986  8 

Erosion ~ S + TPI + Curv +
L + North  

68.3  84.4  56.3  52.6  969  5 

Erosion ~ H + S + TPI +
Curv + L + North + Top  

68.3  83.7  56.3  54.2  980  7 

Erosion ~ H + S + TPI +
Curv + L + North  

68.1  83.8  56.1  53.4  975  6 

Erosion ~ S + TPI + L +
North + Convergent  

68.0  83.3  56.2  53.0  969  5 

Erosion ~ H + S + TPI +
Curv + L + North +
Convergent  

68.0  83.5  56.0  53.4  981  7 

Erosion ~ S + TPI + North +
Convergent  

67.7  82.6  55.6  52.7  982  4 

Erosion ~ S + TPI + L +
North  

67.5  83.0  55.6  52.1  962  4 

Erosion ~ S þ TPI þ North  67.5  81.8  55.8  52.3  979  3 
Erosion ~ S + TPI + Curv +

North  
67.4  81.8  55.6  51.8  985  4 

Erosion ~ S + Curv + L +
North + Top  

67.4  81.1  56.0  53.2  987  5 

Erosion ~ S + TPI + Curv +
L + Convergent + Top  

67.2  83.4  54.3  51.4  983  6 

Erosion ~ S + TPI + Curv +
L  

67.1  83.8  54.0  51.4  972  4 

Erosion ~ S + TPI + L +
Convergent  

67.1  82.9  54.3  51.4  972  4 

Erosion ~ H + S + TPI +
Curv + L  

67.1  83.8  54.0  51.4  978  5 

Erosion ~ S + L + North  66.9  81.2  55.4  52.3  984  3 
Erosion ~ S + L + North +

Top  
66.9  81.9  55.1  51.9  989  4 

Erosion ~ S + Curv + L +
North  

66.8  80.8  54.8  52.4  982  4 

Erosion ~ S + TPI + Curv +
L + Top  

66.6  83.1  53.7  50.5  977  5 

Erosion ~ S + TPI + L  66.5  82.8  53.5  50.5  966  3 
Erosion ~ S + TPI +

Convergent  
66.5  81.3  54.2  51.0  983  3 

Erosion ~ S + Curv + L  66.0  79.9  53.7  52.0  985  3 
Erosion ~ S + TPI + Curv  66.0  80.6  53.7  50.5  986  3 
Erosion ~ S + TPI  65.9  80.4  53.5  50.5  979  2 
Erosion ~ S + L  65.7  80.5  53.6  49.5  985  2 
Erosion ~ S + L + Top  65.1  80.4  52.6  49.0  990  3  

Ordinary Chernozems 
Erosion ~ H + S + TPI +

Curv + L + North + Top  
81.3  95.5  55.2  61.5  458  7 

Erosion ~ H + S + Curv + L 
+ North + Convergent  

80.6  94.5  53.4  62.8  457  6 

Erosion ~ S + A + TPI +
Curv + L  

80.6  95.6  54.2  58.6  458  5 

Erosion ~ H + S + TPI +
Curv + North +
Convergent + Top  

80.4  95.2  53.5  61.0  456  7 

Erosion ~ H + S + TPI +
Curv + L + North +
Convergent  

80.4  94.9  52.3  61.9  457  7 

Erosion ~ H + S + A + Curv 
+ L + North + Convergent  

80.4  94.2  52.9  62.1  458  7 

Erosion ~ H + S + A + TPI +
Curv + L + North +
Convergent  

80.4  95.2  52.4  61.0  459  8  

Table 4 (continued ) 

Model Accuracy, % BIC n 

GenAcc Level 
0 

Level 
1 

Level 
2 

Erosion ~ H + S + A + TPI +
Curv + North +
Convergent  

80.2  94.9  51.8  61.0  459  7 

Erosion ~ H + S + TPI +
Curv + North  

80.2  94.9  52.4  60.6  459  5 

Erosion ~ H + S + A + Curv 
+ North + Convergent +
Top  

80.2  95.2  51.7  60.8  460  7 

Erosion ~ S + A + TPI + L  80.0  95.2  52.9  57.3  456  4 
Erosion ~ H + S + A + TPI +

Curv + North  
80.0  94.2  51.9  61.0  460  6 

Erosion ~ H + S + A + TPI +
Curv + Convergent + Top  

79.8  95.2  50.0  60.6  453  7 

Erosion ~ S þ A þ TPI  79.6  94.6  51.9  57.1  459  3 
Erosion ~ H + S + Curv +

North + Convergent  
79.4  94.5  50.0  60.2  458  5 

Erosion ~ H + S + Curv +
North + Convergent + Top  

79.2  94.5  48.9  60.0  458  6 

Erosion ~ S + TPI + L +
North  

78.7  94.9  48.8  55.7  457  4 

Erosion ~ S + TPI + Curv +
L + North  

78.1  94.9  46.9  54.0  458  5 

n – the number of variables; Levels 0, 1 and 2 are soil erosion intensity cate-
gories. The model that was selected for automated digital soil erosion intensity 
mapping is in bold. 

Table 5 
The variables of the selected ordinal regression models for typical and ordinary 
Chernozems.  

Variable Value Standard Error Z-value p-Value 

Typical Chernozems 
Intercept 1  1.19  0.22  5.53  ≪0.0001 
Intercept 2  4.09  0.28  14.58  ≪0.0001 
S  –0.89  0.07  − 12.29  ≪0.0001 
North  0.46  0.17  2.64  0.01 
TPI  0.80  0.12  6.47  ≪0.0001  

Ordinary Chernozems: 
Intercept 1  2.77  0.33  8.48  ≪0.0001 
Intercept 2  5.49  0.45  12.33  ≪0.0001 
S  − 1.27  0.11  − 11.34  ≪0.0001 
A  1.38  0.21  6.67  ≪0.0001 
TPI  0.92  0.18  5.13  ≪0.0001  

Table 6 
The quality indicators of the selected ordinal regression models for the analyzed 
subtypes of Chernozems.  

Quality indicator Chernozems 

Typical Ordinary 

Accuracy, % Overall (GenAcc)  67.5  79.6 
Level 0  81.8  94.6 
Level 1  55.8  51.9 
Level 2  52.3  57.1 

BIC  978.8  458.9 
Veall-Zimmermann pseudo-R2  0.60  0.77  
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The analysis of the quality of the selected ordinal logistic regression 
models showed that the statistical closeness of the relationship between 
soil erosion intensity and all terrain parameters is closer for OCh, and the 
OCh model exceeds the TCh model by 12 % in terms of overall accuracy. 
For both soils, eroded areas are determined with much less accuracy 
(50–60 %) than non-eroded ones (80–95 %). Previously, a similar study 
for an area 80 km north of site I was carried out (Kozlov et al., 2019). 
The intensity of soil erosion was predicted as a function of its depen-
dence on the calculated soil washout rates using the WaTEM/SEDEM 
model. The model was evaluated by the correspondence between the 
total proportion of slightly and moderately (+highly) eroded soils. The 
results showed an error from 20 to 75 %, depending on the criteria for 
diagnosing soil erosion. 

Errors in predicting soil erosion intensity based only on geomorphic 
characteristics are explained by the variety of erosion processes, where 
the relief is one among many factors. In general, the results show a 
greater role of geomorphic factors in the intensity of soil erosion by 
water in OCh soils than in TCh soils. One reason is the difference in 
precipitation patterns. In the steppe area, the annual precipitation is less 
and the climate is warmer, which created conditions for the formation of 
OCh soils. In addition, compared to TCh soils, OCh soils have 1.7 times 
lower water erodibility because of differences in the particle size dis-
tribution (Larionov, 1993). The differences may also be related to the 
different duration of agricultural use of these soils. The Chernozems of 
the southern site were involved in agricultural crop rotation 100–150 yr 
later than at the northern site because of the location of the border of the 

Russian Tsardom there until the beginning of the eighteenth century 
(Perkova, 2017). 

Errors in separating slightly eroded and moderately eroded soils raise 
the question of the applicability of the selected models for automated 
erosion mapping. The main widely used alternative to modeling are soil 
maps created by visual-expert approaches based on the results of a soil- 
erosion survey that was carried out in the former Soviet Union in the 
1960s–1980s. Comparison of the modeling results with the archival soil 
map showed a 25 % discrepancy between the contours of soil erosion 
intensity. In a similar work on digital mapping of soil associations in the 
Belgorod Oblast (Zhidkin et al., 2021), similar results were obtained. In 
it, the maps of soil erosion, built by digital and visual-expert methods, 
have a minimal difference on the flat interfluve areas and a discrepancy 
on slopes up to 3◦ of up to 50 %, and on slopes up to 5◦ of up to 89 %. 

In comparison with the ground survey data (132 points on the fields 
of the test farm), the visual interpretation method also shows an accu-
racy of 50–68 % in determining eroded soils (Table 7). Almost half of the 
errors were because of the presence of a lesser intensity of soil erosion by 
water than determined in the field. Compared to field data, the simu-
lated contours are inferior in overall accuracy to the archival soil map by 
only 3 %. Comparison of the positions of soil erosion contours according 
to different mapping methods shows that, on average, they coincide on 
75 % of the area. Moreover, the difference increases with increasing 
intensity of soil erosion. Thus, the contours of moderately and highly 
eroded soils coincide only by 56 %. That is, different mapping methods 
determine such soils in half the cases at various slope positions. These 
results are of particular interest and require additional verification by 
field studies of highly eroded soils. 

The visual-expert method mentioned above and the proposed models 
have comparable accuracy and the same disadvantages. The advantage 
of the proposed technique is its accessibility: only a DEM is required for 
modeling, and large-scale soil maps are classified departmental infor-
mation and in 90 % of cases have no vector analogues. Thus, automated 
mapping of soil erosion by water using terrain parameters is a good 
alternative to archival (traditional) soil maps. The model we developed 
can be used for mapping the erosion of TCh and OCh soils in territories 
comparable in terms of geomorphic and climatic conditions. First, this is 
the Central Chernozem region of European Russia, as well as the steppe 
territories of the distribution of ordinary Chernozems south of the study 
area. Certain limitations of the applicability of this method may arise 
when the soil cover is mosaic. The results of morphometric analysis 
showed that for different subtypes of Chernozems, water erosion is 
affected by the same terrain parameters, but the nature of this influence 
is significantly different. To apply the models to other soil (sub)types of 
the study region, it is required to test the proposed regression analysis 
technique on another sample of field studies of soil erosion by water. In 
this case, the sequence of selection of a new model and the criteria for 
assessing its reliability can be similar to those we have proposed. 

Fig. 6. Comparison of soil erosion intensity mapping results using the selected 
ordinal regression model and the conventional visual-expert method for site II 
with OCh (the territory of the farm Zakutskoye, RUSAGRO Ltd., Belgorod 
Oblast, European Russia). Note: the shades of gray in the unanalyzed land 
category represent a hillshade as a way of presenting the topography. 

Table 7 
Comparison of the contours of the categories of soil erosion intensity obtained 
using the proposed ordinal regression models (automated soil erosion mapping) 
and the archival soil map (conventional mapping).  

Soil erosion 
category 

Correspondence between 
the modeled and archival 
map, % 

Coincidence with field survey 
points, % 

Model 
mapping 

Conventional 
mapping 

0 – non-eroded  86  99  100 
1 – slightly 

eroded  
60  46  50 

2 – moderately 
(+highly) 
eroded  

56  64  68 

In total  75  83  86  
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6. Conclusions 

In a global context, the study area (the southeast of the Central 
Russian Upland) is a typical example of a combination of intense agri-
cultural pressure and the problem of increased rates of water erosion of 
soils. The work was directed to the study of the influence of individual 
terrain morphometric parameters on the intensity of water erosion of 
two zonal subtypes of arable Chernozems: typical in the forest-steppe 
zone and ordinary in the steppe. Understanding the consequences of 
water erosion on plowed soils and attempting to reproduce and model 
them with automated methods in this case study is a contribution to the 
global study of the geography of soil erosion processes and denudation 
in general. 

Terrain morphometric parameters were calculated from a DEM with 
a resolution of 100 m/pixel for 1146 soil ground-survey points. It has 
been found that ordinary Chernozems in all the parameters show a 
stronger relationship between geomorphic factors and soil erosion by 
water than typical Chernozems. Signs of water erosion on typical 
Chernozems begin to be observed “earlier” than in ordinary ones, i.e., on 
less steep slopes, closer to drainage divides. 

Based on the revealed dependencies for the two subtypes of Cher-
nozems, predictive models of ordinal regression were developed and 
their accuracy was assessed. The overall accuracy of the models was 68 
% for typical Chernozems and 80 % for ordinary Chernozems. The model 
for ordinary Chernozems exceeds the model for typical Chernozems by 
12 % in terms of overall accuracy. For both soil subtypes, eroded areas 
are determined with much less accuracy (50–60 %) than non-eroded 
areas (80–95 %). 

The selected ordinal logistic regression models made it possible to 
map the probability of occurrence of a soil of a certain category of soil 
erosion intensity in a particular pixel using a set of geomorphic pre-
dictors. A layer-by-layer comparison of probability maps shows the 
resulting cartogram of soil erosion intensity with maximum values for 
each category. The proposed method for mapping water erosion of soils 
using only DEMs and tools for its analysis and processing in GIS has 
disadvantages in differentiation between slightly eroded and moder-
ately (+highly) eroded Chernozem soils. At the same time, the advan-
tages of the proposed method are ease of use, wide spatial coverage, as 
well as the objectivity and reproducibility of the created maps of the 
intensity of soil erosion by water. Given the above limitations on the 
geography of applicability, the proposed method, with appropriate 
adaptation and calibration to local conditions, can be widely used in 
other agricultural regions of the world. 
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